
Vulnerability Detection - Best Effort

Aravind Machiry

Holistic Software Security

Bits and pieces copied from: https://help.semmle.com/QL/ql-training/cpp

● We don’t need to find all the bugs, i.e., we do not need to be sound.

○ “Unsoundness was controversial in the research community, though it has since become almost a de facto

tool bias for commercial products and many research projects.”

● Precision (i.e., no false positives is more important):

○ “False positives do matter. In our experience, more than 30% easily cause problems. People ignore the tool.”

Best effort techniques

*a-few-billion-lines-of-code-later.

● METAL: Use compiler to check user written patterns.

● Custom language for checker:

○ Hard to write accurate patterns for common developers.

● False positives:
○ No field sensitivity and context sensitivity.

Gen 1: User written patterns.

Using Programmer-Written Compiler Extensions.

● Microgrammers:

○ Only parse required language features => Custom parsers for each checker.

● To detect Null ptr dereference:

○ We need to parse “if” and pointer-dereference.

● No need to have full compiler front-end.

Gen 2: Make the patterns easier.

How to Build Static Checking Systems Using Orders of Magnitude Less Code

● Code Property Graphs:

○ Queries using Gremlin: Graph query over code property graph.

Gen 3: Make patterns even easier.

Modeling and Discovering Vulnerabilities with Code Property Graphs

● Sys: static/symbolic tool:

○ Use static extensions to find potential flows and then use symbolic checker to

filter out false positives.

Gen 4: Reduce false positives.

Sys: a Static/Symbolic Tool for Finding Good Bugs in Good (Browser) Code

● Sys: static/symbolic tool:

○ Use static extension to save and report paths and symbolic checker to accurately find the bugs.

Sys: Static/Symbolic tool

Static Extension

● False positives

● Sys: static/symbolic tool:

○ Use static extension to save and report paths and symbolic checker to accurately find the bugs.

Sys: Static/Symbolic tool

Static Extension Symbolic Checker

● Logical query language similar to SQL.

● Modular and extensible:
○ Support for custom classes.

○ Libraries.

● Well maintained by Microsoft and its open source.

CodeQL: State of the art (Pattern based)

CodeQL

AST
Representation

void fire_thrusters(double vectors[12]) {

 for (int i = 0; i < 12; i++) {

 ... vectors[i] ...

 }

}

...

double thruster[3] = ... ;

fire_thrusters(thruster);

CodeQL : Example
● What is the problem with the code?

void fire_thrusters(double vectors[12]) {

 for (int i = 0; i < 12; i++) {

 ... vectors[i] ...

 }

}

...

double thruster[3] = ... ;

fire_thrusters(thruster);

CodeQL : Example
● What is the problem with the code?

● In C, array types of parameters degrade to

pointer types.

● The size is ignored!

void fire_thrusters(double vectors[12]) {

 for (int i = 0; i < 12; i++) {

 ... vectors[i] ...

 }

}

...

double thruster[3] = ... ;

fire_thrusters(thruster);

Finding using CodeQL
● Basic Query Structure:

 import <language library>

 from <entities and types>

 where <queries on entities>

 select <entities to select>

void fire_thrusters(double vectors[12]) {

 for (int i = 0; i < 12; i++) {

 ... vectors[i] ...

 }

}

...

double thruster[3] = ... ;

fire_thrusters(thruster);

Finding using CodeQL
● First, let's find function calls.

import cpp

from Function f, FunctionCall c

where f = c.getTarget()

select "Found call to " + f.getName()

void fire_thrusters(double vectors[12]) {

 for (int i = 0; i < 12; i++) {

 ... vectors[i] ...

 }

}

...

double thruster[3] = ... ;

fire_thrusters(thruster);

Finding using CodeQL
● Argument should be constant array.

import cpp

from Function f, FunctionCall c, int i

where f = c.getTarget()

 and (f.getParameter(i).getType() instanceof ArrayType)

select "Found call to " + f.getName()

void fire_thrusters(double vectors[12]) {

 for (int i = 0; i < 12; i++) {

 ... vectors[i] ...

 }

}

...

double thruster[3] = ... ;

fire_thrusters(thruster);

Finding using CodeQL
Checking size of parameter and argument:

import cpp

from Function f, FunctionCall c, int i, int a, int b

where f = c.getTarget()

 and a = c.getArgument(i).getType().(ArrayType).getArraySize()

 and b = f.getParameter(i).getType().(ArrayType).getArraySize()

 and a < b

select c.getArgument(i), f, “Found vulnerability”

void fire_thrusters(double vectors[12]) {

 for (int i = 0; i < 12; i++) {

 ... vectors[i] ...

 }

}

...

double thruster[3] = ... ;

fire_thrusters(thruster);

Finding using CodeQL
Checking size of parameter and argument:

import cpp

from Function f, FunctionCall c, int i, int a, int b

where f = c.getTarget()

 and a = c.getArgument(i).getType().(ArrayType).getArraySize()

 and b = f.getParameter(i).getType().(ArrayType).getArraySize()

 and a < b

select c.getArgument(i), f, “Found vulnerability”

Characteristic predicate

Argument size < parameter size

int func(int tainted) {

 int x = tainted;

 if (someCondition) {

 int y = x;

 callFoo(y);

 } else {

 return x;

 }

 return -1;

}

CodeQL : Data flow analysis

printf(userControlledString, arg1);

CodeQL : Data flow example

Format string checker: Use of externally controlled format

string.

Goal: Find uses of printf (or similar) where the

format string can be controlled by an attacker.

CodeQL : format string checker
import cpp

import semmle.code.cpp.dataflow.DataFlow

import semmle.code.cpp.commons.Printf

class SourceNode extends DataFlow::Node {

 SourceNode() {

 not DataFlow::localFlowStep(_, this)

 }

}

from FormattingFunction f, Call c, SourceNode src, DataFlow::Node arg

where c.getTarget() = f and arg.asExpr() = c.getArgument(f.getFormatParameterIndex()) and

 DataFlow::localFlow(src, arg) and not src.asExpr() instanceof StringLiteral

select arg, "Non-constant format string."

CodeQL : format string checker
import cpp

import semmle.code.cpp.dataflow.DataFlow

import semmle.code.cpp.commons.Printf

class SourceNode extends DataFlow::Node {

 SourceNode() {

 not DataFlow::localFlowStep(_, this)

 }

}

from FormattingFunction f, Call c, SourceNode src, DataFlow::Node arg

where c.getTarget() = f and arg.asExpr() = c.getArgument(f.getFormatParameterIndex()) and

 DataFlow::localFlow(src, arg) and not src.asExpr() instanceof StringLiteral

select arg, "Non-constant format string."

Source node in data flow.

CodeQL : format string checker
import cpp

import semmle.code.cpp.dataflow.DataFlow

import semmle.code.cpp.commons.Printf

class SourceNode extends DataFlow::Node {

 SourceNode() {

 not DataFlow::localFlowStep(_, this)

 }

}

from FormattingFunction f, Call c, SourceNode src, DataFlow::Node arg

where c.getTarget() = f and arg.asExpr() = c.getArgument(f.getFormatParameterIndex()) and

 DataFlow::localFlow(src, arg) and not src.asExpr() instanceof StringLiteral

select arg, "Non-constant format string."

Source node in data flow.

Flows from src to arg.

CodeQL : format string checker
import cpp

import semmle.code.cpp.dataflow.DataFlow

import semmle.code.cpp.commons.Printf

class SourceNode extends DataFlow::Node {

 SourceNode() {

 not DataFlow::localFlowStep(_, this)

 }

}

from FormattingFunction f, Call c, SourceNode src, DataFlow::Node arg

where c.getTarget() = f and arg.asExpr() = c.getArgument(f.getFormatParameterIndex()) and

 DataFlow::localFlow(src, arg) and not src.asExpr() instanceof StringLiteral

select arg, "Non-constant format string."

Source node in data flow.

Flows from src to arg.

Src is not a constant string.

● Taint analysis:
○ Custom taint source functions and taint sinks.

● LGTM -> Can run various checkers on open source codebases.

● Also, supports various other languages: C++, Java, JavaScript, etc.

CodeQL: Other features

● AST representation (v/s IR representation):
○ Depends on coding pattern.

● Not suitable for complex analysis involving fine-grained data flow.

CodeQL: Drawbacks

Pattern based methods
● Fine-grained patterns (e.g., CodeQL, Sys):

○ Hard to write => Need skill.

○ Require build system.

○ Precise.

● Coarse-grained patterns (e.g., Microgrammers, Metal):
○ Relatively easy to write.

○ Does not depend on build system (i.e., no compilation needed).

○ False positives.

Can we automatically generate fine-grained pattern (maybe with small help from developer)?

● Category 1: Learn vulnerable code patterns from given dataset.

● Category 2: Bugs as a deviant behavior => Less frequently used pattern most probably suggests a

bug.

● Category 3: Assist developers and other techniques to focus on potentially vulnerable code.

● Category 4: Active learning => Interact with users to know how a bug should look like.

Best effort: Machine learning

General Principle of ML based Detectors

General Principle of ML based Detectors

Source Representation

AST, CFG, Program
Dependency Graph (PDG),

Symbolic Trace, etc.

General Principle of ML based Detectors

Source Representation Vectorization

AST, CFG, Program
Dependency Graph (PDG),

Symbolic Trace, etc.

Bag of words, Word2Vec,
Custom Boolean vector, etc

General Principle of ML based Detectors

Source Representation Vectorization Model Training

AST, CFG, Program
Dependency Graph (PDG),

Symbolic Trace, etc.

Bag of words, Word2Vec,
Custom Boolean vector, etc

RNN, LSTM, SVM,
Clustering, etc.

Category 1: μVulDeePecker

Category 1: μVulDeePecker

Category 1: μVulDeePecker

Category 1: μVulDeePecker

Category 1: μVulDeePecker

● Based on Code Property Graphs.

● For each sensitive sink -> Infer the “most common way” the arguments are passed -> create an
inverse pattern of the most common way.

Category 2: Automatic Inference of Taint Style Vulnerabilities

Category 2: Automatic Inference of Taint Style Vulnerabilities

Category 2: Automatic Inference of Taint Style Vulnerabilities

Category 2: Automatic Inference of Taint Style Vulnerabilities

Category 2: Automatic Inference of Taint Style Vulnerabilities

● BRAN: Finds potentially vulnerable functions:
○ Can direct the attention of developer or other tools (E.g., fuzzing) towards these functions.

● Uses representation based features and commit metadata:
○ Size of function, number of pointer accesses, Loops, etc.

○ Number of commits to the function, Reputation of the developer, etc.

● Trains RandomForest to detect vulnerable functions.

Category 3: Assist Developers in finding Potentially vulnerable code

● Existing tools require a lot of effort by the developers.
○ Write precise patterns (CodeQL)

■ Hard -> GitHub pays money to write a good CodeQL query.

Category 4: Active learning

https://securitylab.github.com/bounties/

● What do developers know?
○ Given a warning, they can say whether the warning is true or not.

Category 4: Active learning

● Can we learn from it?

Category 4: Active learning

Category 4: ARBITRAR: User-Guided API Misuse Detection!

Category 4: ARBITRAR: User-Guided API Misuse Detection!

Category 4: ARBITRAR: User-Guided API Misuse Detection!

Category 4: ARBITRAR: User-Guided API Misuse Detection!

Category 4: ARBITRAR: User-Guided API Misuse Detection!

Category 4: ARBITRAR: User-Guided API Misuse Detection!

Category 4: ARBITRAR: User-Guided API Misuse Detection!

Category 4: ARBITRAR: User-Guided API Misuse Detection!

How quickly did we find bugs? 85% of the bugs were found with first 2 tries.

Category 4: ARBITRAR: User-Guided API Misuse Detection!

Machine Learning Based Methods
● Features depends on bug types:

○ Syntactic v/s semantic features.

● Need large labelled dataset.

● Should have explainable results.

● Interactive techniques should be explored.

